Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	$\begin{array}{c} & \stackrel{O^{T}}{\longrightarrow} & \stackrel{O^{T}}{\longrightarrow} & \stackrel{Va^{+}}{\longrightarrow} \\ \rightarrow & + CH_{3}OH \\ \\ ALLOW \\ COO^{-}Na^{+} & \text{for carboxylate group} \\ Skeletal drawing -OH & \text{for methanol} \\ \\ Ignore omission & \text{of charges} \end{array}$	O—Na ⁽⁺⁾	(1)

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	No more precipitate formed / No more solid formed / solution turns universal indicator paper red / litmus red / pH meter reading below 7	Precipitate " disappears"	(1)
	IGNORE Tests involving gas formation with metals or carbonates "No further reaction" Just 'use indicator/pH meter'	effervescence fizzing bubbles	

Question Number	Acceptable Answers	Reject	Mark
1(b)	(Sparingly soluble because of) the London forces between the rings / between the molecules ALLOW van der Waals' forces / induced dipole / instantaneous dipole-induced dipole / temporary dipoles for London forces Ignore references to permanent dipoles (1 Hydrogen bonds between salicylic acid and water (which)	(2)
	increases solubility) (1 IGNORE Any mention of "hydrophobic")	

Question Number	Acceptable Answers	Reject	Mark
1 (c)	Any three from		(3)
	(Acid hydrolysis)		
	The acid is a catalyst (not a reagent)		
	OR		
	The reaction is reversible / is an equilibrium reaction / does not go to completion / produces lower yield		
	IGNORE References to number of steps (needed to produce product)		
	OR		
	Produces the (carboxylic) acid (not its salt)		
	OR		
	The H ⁺ is an electrophile (and the OH ⁻ nucleophile)		
	ALLOW reverse arguments		

Question Number	Acceptable Answers	Reject	Mark
1(d)(i)	A PCI ₅ /SOCI ₂ / PCI ₃ (1) HCI	(3)
	B LiAlH ₄ (1	NaBH ₄	
	ALLOW names for A and/or B		
	C OH O \bigcirc OH O O Allow COOC ₂ H ₅ / COOCH ₂ CH ₃ for ester group (1)	

Question Number	Acceptable Answers	Reject	Mark
1(d)(ii)	Any two from four differences:		(2)
	Compound D produces hydrogen chloride and not water	HCI (aq)	
	OR		
	Compound D reacts irreversibly not reversibly / goes to completion / produces higher yield		
	OR		
	Compound D reacts faster / more vigorously / reacts with alcohols without the need for a catalyst or H ⁺ ALLOW		
	Compound D reacts more exothermically OR		
	Compound D produces only one liquid / produces only one solid product (and so no further separation is needed) IGNORE References to heating reagents		

Question Number	Acceptable Answers		Reject	Mark
	(proton / hydrogen) environments : This must be stated.	(1)		(5)
	M2 nglet and one triplet and one quartet ese shown on diagram	(1)		
hydro NOTE candic	M3 ng is due to (n+1) rule / number of adjacent gen atoms : This must be clearly stated at least once in late's answer and not contradicted by a wrong ng pattern		ʻadjacent carbons '	
Spirtin		(1)		
	M4 (Area ratios of peaks) 3:2:1 stated/or relative order and consistent with CH ₃ :CH ₂ :OH Can be shown on annotated (displayed) formula of etha ALLOW reference to height ratios	anol (1)		
	M5 (Chemical shift values, δ , in ppm) Singlet = 2.0 - 4.0, Triplet = 0.1 - 1.9, Quartet = 3.0 - OR shown on diagram Allow any single value, or range of values, within these ranges	!		
		(1)		

Question Number	Acceptable Answers	Reject	Mark
1 (f)	Because it has 12 protons/ hydrogen atoms in the same environment/are equivalent		(1)

Question Number	Acceptable Answers	Reject	Mark
1 (g)	Radio waves	In combination with infrared/microwaves/uv	(1)
	Ignore electromagnetic radiation		

Question Number	Acceptable Answers	Reject	Mark
1(h)	Any two from three: Salicylic acid (has O-H at) 3300-2500 (cm ⁻¹) Ignore the phenolic OH between 3750-3200 (cm ⁻¹) for salicylic acid OR Compound D (has C=O at) 1795 (cm ⁻¹) and 1700-1680 (cm ⁻¹) for salicylic acid ALLOW 1725-1700 (cm ⁻¹) for salicylic acid OR Compound D (has C-Cl at) 800-600 (cm ⁻¹)	1740-1720 (cm ⁻¹)	(2)

Question Number	Acceptable Answers	Reject	Mark
2 (a)(i)	Aldehydes often contain (carboxylic) acid formed by oxidation (by the oxygen in air)		1

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	A larger volume of sodium carbonate solution is neutralized / a larger volume of carbon dioxide forms / faster reaction / more effervescence / more vigorous ALLOW reverse argument for impure aldehyde	(The old stock of) aldehyde does not react	1

Question Number	Acceptable Answers	Reject	Mark
2(a)(iii)	Na ₂ CO ₃ (aq) + 2C ₃ H ₇ COOH(aq) → 2C ₃ H ₇ COO ⁽⁻⁾ Na ⁽⁺⁾ (aq) + CO ₂ (g) + H ₂ O(I) Correct balanced equation (1) Correct state symbols on correct species (1) ALLOW H ₂ O(aq) C ₃ H ₇ COO ⁽⁻⁾ Na ⁽⁺⁾ (s) C ₃ H ₇ COOH(I)	NaCO ₃	2

Question Number	Acceptable Answers	Reject	Mark
2(a)*(iv)	3300 -2500 (cm ⁻¹) AND O-H (stretching) (1)	COOH (group)	3
	1725 – 1700 (cm ⁻¹) AND C=O (stretching) (1)	COOH (group)	
	ALLOW single numbers or ranges within these ranges ALLOW 1300-1250 (cm ⁻¹) AND C-O in COOH		
	Very broad (O-H) due to hydrogen bonding (1)	Hydrogen Bonding in C=O	

Question Number	Acceptable Answers	Reject	Mark
2(a)(v)	First mark (stand alone) 4 peaks OR 4 hydrogen environments		3
	ALLOW4 chemical shifts(1)		
	Second and Third Marks		
	Splitting pattern:		
	(CH ₃ CH ₂ CH ₂ COO <u>H</u>) singlet /1 line	1 split	
	(CH ₃ CH ₂ C \underline{H}_{2} COOH) triplet / three lines	3 splits	
	(CH ₃ C \underline{H}_2 CH ₂ COOH) sextuplet / sextet / six lines	6 splits	
	(C \underline{H}_{3} CH ₂ CH ₂ COOH) triplet / three lines	3 splits	
	All four correct (2) any three (1)		
	ALLOW		
	No splits, 2 splits, five splits, 2 splits scores 2		
	1,3,6,3 'splits' scores 1 mark		

Question Number	Acceptable Answers		Reject	Mark
2 (b)	Start pH at 2.9 ALLOW 2—4	(1)		4
	Initial sharp rise to buffer region then vertical section at 25 cm ³ ALLOW Gradual rise to vertical section at 25 cm	1 ³ (1)	Horizontal from start	
	Vertical within pH range 6-11 and 2.5-4 units long	(1)	deviation from vertical	
	End pH value in range 12-13	(1)	maximum before final pH Graph ending before 50cm ³	

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	White / steamy / misty fumes ALLOW 'gas' for fumes IGNORE correct indicator test on product	White smoke Effervescence Just 'fumes' Just 'gas'	1

Question Number	Acceptable Answers	Reject	Mark
2(c)(ii)	CH3CH2CH2COCI(1)ALLOW displayed formulabutanoyl chloride(1)	C ₃ H ₇ COCL Butyl Chloride	2
	ALLOW Butanyl chloride No TE on incorrect structure	Buthyl Chloride	

Question Number	Acceptable Answers	Reject	Mark
2(d)(i)	Butan-1-ol OR CH ₃ CH ₂ CH ₂ CH ₂ OH If 2 answers are given both must be correct	Butanol Butanal C₄H9OH	1

Question Number	Acceptable Answers	Reject	Mark
2(d)(ii)	(Dry) Ethoxyethane / diethylether / Ether		1
	OR		
	C ₂ H ₅ OC ₂ H ₅ / CH ₃ CH ₂ OCH ₂ CH ₃		
	If 2 answers are given they must both be correct		

Question Number	Acceptable Answers		Reject	Mark
2(d)(iii)	The responses are in pairs: a type (1) ar an associated justification (1)	nd		2
	Reduction (of butanoic acid)	(1)		
	By addition of hydrogen / loss of oxygen	(1)		
	OR			
	Oxidation of lithium tetrahydroidalumina / aluminium hydride / LiAlH ₄	te (1)		
	By addition of oxygen	(1)		
	OR			
	(Nucleophilic) addition	(1)	Any substitution Electrophilic	
	of hydride / H	(1)	addition	
	OR			
	Redox	(1)		
	Because butanoic acid has been reduced AND LiAIH ₄ has been oxidised	(1)		

Question Number	Acceptable Answers		Reject	Mark
2(e)(i)	(Concentrated / dilute) sulfuric / hydrochloric acid ALLOW any strong acid			2
	ALLOW 'acid (catalyst)'	(1)	Just 'catalyst' Just H⁺	
	(heat or boil under) reflux		Just 'boil' Just 'distil'	
	ALLOW Heat / warm	(1)	High temperature	
	Elevated temp≤65°C		Increased concentration	

Question Number	Acceptable Answers	Reject	Mark
2(e)(ii)	All bonds must be shown except	Omitted Hydrogen / sticks	1
		sticks	

Question Number	Acceptable Answers	Reject	Mark
2(e)(iii)	Butanoyl chloride / CH ₃ CH ₂ CH ₂ COCl ALLOW Butanyl chloride	Butyl Chloride Buthyl Chloride	1
	OR		
	Butanoic anhydride / (CH ₃ CH ₂ CH ₂ CO) ₂ O		
	OR		
	Specified alkyl butanoate (not methyl butanoate)		
	If name and structure are both given they must both be correct		

Question Number	Acceptable Answers	Reject	Mark
	Acceptable Answers Advantage marks are dependent on correct reagent (or near miss e.g. propanoyl chloride) in (iii). No TE on random answer to (iii) eg H ₂ SO ₄ Advantages – any two from: Higher yield / goes to completion/ not an equilibrium reaction / not reversible No heat / no refluxing / less energy needed No catalyst needed / faster By-product is a gas (so easier to separate) Disadvantage (marked independently of (e)(iii)) any one of: (Acyl chloride is) more expensive / corrosive IGNORE Acyl chloride is toxic / hazardous / harmful / difficult to store OR toxic /corrosive and HCl /gas / fumes evolved IGNORE harmful/ hazardous/ dangerous	Good yield	3
	OR		
	has lower atom economy (1)		

Question Number	Correct Answer	Reject	Mark
3	Methyl propanoate		1
(a)(i)			
	ALLOW methy or methly for methyl		

Question Number	Acceptable Answers		Reject	Mark
3(a)(ii)	Toxic (steamy/misty) fumes/ toxi HCI(gas)/corrosive HCI(gas)/toxic propanoyl chloride/lachrymatory propanoyl chloride So use in a fume cupboard OR		HCI(aq)/ hydrochloric acid Just harmful/irritant	2
	Corrosive Propanoyl chloride is So wear gloves when handling	(1) (1)	Just harmful/irritant	

Question Number	Acceptable Answers	Reject	Mark
3 (b)	Table		3
	0.31, 0.16, 1.41		
	all 3 scores 2, 2 out of 3 scores 1, 1or 0 out of 3 scores 0(2)		
	$K_{\rm c} = (0.21/{\rm V}) \times (1.41/{\rm V})$		
	(0.16/V) x (0.31/V)		
	$K_{\rm c} = 5.969758$		
	$K_c = 5.97$ (1) IGNORE sf except 1 IGNORE any units		
	ALLOW TE from incorrect values in table.		